ProLEARN, A PLATFORM TO SUPPORT PROGRAMMING
LEARNING

Anténio José Mendes
Centro de Informdtica e Sistemas da Universidade de Coimbra — Portugal
toze@dei.uc.pt

INTRODUCTION

Programming learning is complex for many novice students at university level. The most important
problem for many is their low ability to develop an algorithm that solves a given problem. The application of
basic concepts or the design of simple algorithms can be difficult obstacles. These difficulties are felt independ-
ently of the programming language or paradigm used. Some authors identified reasons for these difficulties [I],
such as:

. The need for good competences on problem solving;

. Students are used to courses that depend mostly on theoretical knowledge and
memorization, but basic programming learning needs a more practical approach, based
mostly on problem solving activities;

. Traditional teaching, often based on lectures and specific programming language syntaxes,
often fails to motivate students to get involved in meaningful programming activities;

. Programs have a dynamic nature, but most learning materials have a static format which
makes difficult to analyse program’s dynamic behaviour;

. Students’ learning needs are often very different within the same course. Different learning
styles and previous experience difficult a common approach to the whole group. Group sizes

often difficult individualized support to students.

Animation/visualization software systems have been used trying to take advantage of the potential
of human visual system. Those systems are rooted in the conviction that programs can be better understood
when represented graphically if compared with textual descriptions and representations. For example, Bluej
[2] is an integrated system including an object-oriented language and an object-oriented development environ-
ment. It uses UML- like class diagrams to present a graphical overview of a project structure. It allows the
interactive creation of objects from any given class present in the project.

Another approach is to use micro worlds populated by representations of concrete entities (robots
and turtles for example). The student can control those entities’ movements and behavior through program-
ming instructions [3].

Many other tools have been proposed, most of them having a limited scope, since they address only
a particular type of algorithms and programs. They serve mainly demonstration purposes, as they can only
animate a set of pre-defined programs, but not student’s programs.

However, some studies have shown that the learning results obtained with the utilization of visualiza-
tion tools are not as good as expected [4]. Three approaches have been proposed to make visualizations more
helpful, engaging visualization, explanatory visualization and adaptive visualization [5]. Engaging visualization
stresses the importance of student involvement in learning. This means that students must have an active role,
instead of just seeing teacher prepared animations. Explanatory visualization proponents argue that many times
students fail to understand what they are seeing. They defend that visual representations should be augmented
with natural language explanations that can help student understanding. Adaptive visualization consists on
adapting the level of detail of visual representations to the difficulties the underlying concepts pose to each
student.

Our own work has followed the two first approaches mentioned. The tools we developed support
engaging activities (they animate student developed programs) and have some explanatory features. We believe

that it is necessary to include adaptive functionalities, but also collaborative support. However, we also think
that learning tools should be adapted to student needs and not only to what teachers think is the best ap-
proach. Knowledge about each student learning style is fundamental to define the best approaches in each case
[6]. These are the main directions of our current project (ProLearn). To add new dimensions to our anima-
tion based simulation tools, namely collaborative features and more individualized support that can make them
more effective for each particular student.

In the next sections we will describe briefly our group previous work and outline our current project
(ProLearn)

ANIMATION BASED SIMULATION TOOLS

Animation based simulation has been proposed to reduce student’s difficulties. It can make program’s
dynamics concrete and visual and support practical work at the student own learning rhythm. Animated views
can help many students in three central learning activities: Understand programs; Evaluate existing programs;
Develop new programs [7]. In our view, this last activity is the most important for learning, but also the most
difficult for many students, as they often fail when asked to develop a new program, even if it is similar to one
they just studied.

We believe learning is more effective when students assume an active role. So, it is important that the
tools allow students to see how their solutions work and compare with how they thought they would work.
This process should lead to error detection, correction and, hence, learning. These activities are very impor-
tant in programming learning, since students can reach a higher competence and confidence level after being
able to have the program running correctly. This is very important, since after a first wrong attempt many
students just give up or try to find a teacher or a colleague that shows them a solution.

Our team has been involved in the development of algorithm and program simulation tools for several years. In
particular we developed two tools, SICAS and OOP-Anim that are briefly described in the next sections.

SICAS

SICAS environment [8] was designed to support learning of basic procedural programming concepts,
such as selection and repetition. It is language independent and oriented to the design and implementation of
algorithms. Using SICAS students are encouraged to develop their capacities through problem solving. They
can create solutions to problems, simulate them and see if they work as expected. The simulator can be used
to detect and correct errors, but also to look for alternative ways to solve the problem and to compare them.
SICAS supports a constructivist approach to learning, as each student assumes an active role, learning at his/
her own pace and progressively constructing his/her own knowledge.

In SICAS, algorithm design is supported by an iconic environment where the student builds a flow-
chart that represents her/his solution. Algorithms developed with SICAS can include attributions, input/output,
repetition and selection instructions. They can use numeric and string variables. Functions can also be defined
and used. These elements can be introduced in a flowchart by clicking (in the toolbar icons) and pointing (in the
design area). When that happens, a dialog box automatically opens asking the student to specify the element
details (e.g. the condition in a selection). This option helps students to avoid common novice programmer syn-
tax errors. Lines connecting components are automatically inserted, avoiding inconsistencies in the flowchart.
The environment also includes the ability to delete, modify or copy any component.

Any algorithm created with SICAS is automatically translated to pseudo-code, C and JAVA code.
These alternatives show that a well designed algorithm can be easily translated into several programming lan-
guages and that the most important factor in algorithm design is its conception, not the programming language
in which it will be coded.

After creating an algorithm, it is possible to see its animated simulation. The student can control
the speed at which the simulation progresses (step-by-step, slow or fast), pause the simulation and go back to
repeat some part of the execution. This allows a deeper analysis of available data and/or a discussion with the
teacher or other learners.

OOP-Anim

Object oriented programming (OOP) paradigm has grown significantly in the last years. Consequently
many universities have adopted this paradigm in their basic programming courses. The development and popu-
larization of OOP languages, like Java, has also contributed to this development. Although knowledge about
basic concepts, such as selection and repetition, is still fundamental, it is also important to have tools that can
support students when learning the basic concepts of the OOP paradigm.

OOP-Anim is a tool that can animate and simulate small Java programs [9]. Its objectives and peda-
gogical approach are the same presented for SICAS. It supports student learning, giving them a tool where they
can create solutions to proposed problems, simulate their execution, detect errors, correct them and, hence,
learn. In a first learning stage this environment can also be used to study examples of programming solutions
given by the teacher. The idea here is to familiarize the student with OOP concepts, like class, object or inher-
itance.

PROLEARN PROJECT

As mentioned before, our previous work consisted essentially in the development of animation based
simulation tools. However, our experience shows that although these tools are useful in many situations, in
other cases they need to be complemented with other features and tools that can give a more complete sup-
port to students, especially those with deeper learning difficulties. Our current project tries to address this
and some other aspects, as we describe briefly in the next sections.

Student guidance - ProGuide

One of the main problems with animation based simulation tools is that they depend on the capacity
the student has to create a first solution to a given problem. Only after a first solution exists, even if wrong,
students can use the tool to simulate and correct it. However, in early learning stages many students find dif-
ficult even to create a first solution attempt.

We are trying to address this problem through the development of a new tool, ProGuide, that
works together with SICAS, interacting with students during basic algorithm development, guiding them when
necessary. It is a dialogue-based tool that helps novice programmers to solve problems using text based com-
munication. When students are creating an algorithm, ProGuide monitors their actions (or lack of action) and
interacts with them, providing some guidance whenever necessary.

ProGuide has three main modules. The first manages natural language knowledge to be used in
dialogues with students. The second module has information about partial steps and strategies to develop a
particular algorithm. The third module follows student’s actions, so that the tool can decide when to initiate a
dialogue and the type of interaction that is more adequate depending on the resolution stage. All these mod-
ules work together to create a useful dialogue with students, trying to encourage them and providing hints so
that they can reach a good solution to their particular task. We believe that this tool can help novice program-
ming students, especially those that have more learning difficulties.

Adaptability

ProGuide is a first attempt to create tools that are more adaptable to individual student’s needs.
However, we believe it will be necessary to take further steps in this direction. In this area our work is still in
the very beginning, although we have some ideas to explore.

Everybody can learn, but each one has his/her own learning style. Teachers use diverse strategies to
cope with students’ different learning styles. Some learners give more attention to facts, data and algorithms,
while others prefer theories and models. Some learners prefer visual information, while others prefer verbal
information. One of our goals is to include in ProLearn tools that can identify each student learning style and
take that into consideration when proposing him/her problems, activities and representation languages that
may lead to an improvement of their problem solving competencies.

ProLearn can also be more adaptable if it is able to identify the types of logical errors frequently made
by each student and use that information to define the type and quantity of stimulus, support and information
given to each of them. The collected information will allow the environment to know each student evolution
in terms of the complexity of tasks successfully completed and the errors he/she more commonly makes. This
information will also be useful to teachers as they will access information about their students, allowing them
to take corrective measures when necessary.

Another planned approach consists on the utilization of case-based reasoning techniques to reuse
examples of past solved problems. These experiences, or cases, which can represent programming solutions,
will be used as a base to retrieve, adapt and present new solutions to students with learning problems. As
the student resolves successfully a problem, a new case can be generated representing this learning situation.
Cases can also represent failure situations, in which the student has failed to solve the problem. Other relevant
knowledge can be added to these cases to explain why the student has failed. Teachers can also provide an
important contribution by giving correct solutions to the system in the form of prototypical cases. These cases,
along with all the others in the case base, can then be used to make ProLearn more proactive in its interactions
with students, for example when they use a simulation tool to solve a problem or when a group is collaborating
in some task. ProLearn will monitor student (or group) work and, if necessary, will act giving suggestions, try-
ing to stimulate student work, giving similar problems partially solved, and so on.

Collaborative learning — College and PlanEdit

Computer Supported Collaborative Learning (CSCL) environments allow geographically distributed
learners to work together and collaborate to accomplish a goal or task. They can offer important support to
students in their programming learning activities. According to [10], collaboration in problem solving provides
not only an appropriate activity, but also promotes reflection, a mechanism enhancing the learning process.
Students that work in groups need to communicate, argue and give opinions to other group members, encour-
aging the kind of reflection that leads to learning.

Our work in CSCL area results from a collaboration with our colleagues from the Castilla-La Mancha
University in Spain. They have developed two collaborative tools that we are integrating with our animation
based simulation tools, as we believe that students can take advantage of using them together [I1].

COLLEGE [12] is a Real Time Collaborative Programming system that allows geographically distrib-
uted programmers to work concurrently and collaboratively in the same programming task (edition, compila-
tion and execution). This tool includes three shared workspaces that support edition/revision of the source
code, compilation of the source code and program execution. The edition is carried out individually, using the
Driver-Observer model which is characteristic of Pair Programming. The edition turn is asked by a student
and authorized by the others at any moment. They also decide democratically, using the coordination support,
when to compile and execute. This coordination is completed with a Decision-Making tool. The collaborative
support is materialized by means of an Instant Message Tool (Structured Chat). In addition, the system has
awareness functionalities: a Session Panel and allows the use of tele-pointers.

PlanEdit was originally developed as a component of DomoSim-TPC, a tool to support collaborative
problem solving in the field of Domotics [13]. However, it was adapted to programming as it is also a problem
solving activity. In particular, its argumentative discussion tool can be used together with SICAS and OOP-Anim
to support group work in programming problem solving.

When working together on a programming problem, students propose and discuss possible solutions. This
work includes several activities, such as analyse proposed solutions, modify them to create alternative solu-
tions, ask for explanations about proposed solutions, comment them and answer to questions and comments
put by other students. All these activities should culminate in the group member’s agreement about the best
problem solution.

PlanEdit structures student’s contributions in a tree and each of them has an associated icon that
represents its type (question, comment, agreement, disagreement and so on). It includes also the list of par-
ticipants and the photo of each contribution author. Interaction with existing contributions and the creation of
new ones is made through a set of buttons that represent each possible type of contribution.

CONCLUSION

In this paper we presented the ProlLearn project currently under development at the University of
Coimbra. This project builds on our previous experience in the development and utilization of animation based
simulation tools. We are developing new tools and planning some others, trying to create an environment that
is adaptable to student’s characteristics, so that it supports each student learning more efficiently. We are also
including collaborative learning support, allowing students to take advantage of the benefices of this approach.
Other features may be planned and developed during project development.

Each of environment’s tools and ProLearn itself will have to be carefully evaluated, especially in terms
of educational effectiveness. As most of the members of the team are programming teachers in several higher
education institutions, ProLearn will be evaluated and used in those institutions. This will certainly give us a
lot of useful information to validate our options and, probably, to define changes and new requirements to be
included in the environment.

REFERENCES

[Jenkins, T., On the Difficulty of Learning to Program. In Proceedings of 3rd Annual LTSN-ICS Confer
ence, pp 53-58, Loughborough University, UK, 2002.

[2] Kolling, M., Quig, B., Patterson, A. & Rosenberg, J., The Blue] system and its pedagogy, Journal of
Computer Science Education, 13(4), Dec 2003.

[3] Bergin, J., Stehlik, M., Roberts, J. & Pattis, R., Karel ++: A Gentle Introduction to the art of Object-
Oriented Programming. John Wiley & Sons, 1997.

[4] Byrne, M., Catambarone, R & Stasko, J., Evaluating Animations as Student Aids in Learning Computer
Algorithms. Computers & Education, 33(5), 1999.

[5] Brusilovsy, P. & Spring, M., Adaptive, Engaging and Explanatory Visualization in a C Programming

Course. In Proceedings of ED-MEDIA - World Conference on Educational Multimedia, Hypermedia &
Telecommunications, Lugano, June 2004.

[6] Hong, H. & Kinshuk, Adaptation to Student Learning Styles in Web Based Educational Systems. In
Proceedings of ED-MEDIA - World Conference on Educational Multimedia, Hypermedia & Tele-
communications, Lugano, June 2004.

[7] Stasko, J., Tango: A Framework and System for Algorithm Animation. [EEE Computer, 23(9),
pp 27-39,1990.
[8] Gomes, A. and Mendes, A., SICAS: Interactive system for algorithm development and simulation.

In Ortega, M. and Bravo, J. (eds.), Computers and Education in an Interconnected Society, Kluwer
Academic Publishers, 2001, pp. 159-166.

[9] Esteves, M. and Mendes, A., A Simulation Tool to Help Learning of Object Oriented Programming
Basics. In Proceedings of the 34th Frontiers in Education Conference, Savannah, USA, October 2004.

[10] Guzdial, M., Kolodner, J., Hmelo, C., Narayanan, H., Carlson, D., Rappin, N., Hiibscher, R., Turns, J.
and Newstetter, W. Computer support for learning through complex problem solving, Communi-
cations of the ACM, 39, 4 (April 1996).

[1] Mendes, A, Esteves, M., Gomes, A., Marcelino, M., Bravo, C. and Redondo, M.. Using simulation and
collaboration in CSI and CS2. In Proceedings of the The Tenth Annual Conference on Innovation and
Technology in Computer Science Education, Costa da Caparica, Portugal, June, 2005

[12] Bravo, C., Mendes, A., Marcelino, M. and Redondo, M. Integrating collaboration with animation and
simulation in computer-supported Programming learning. In Proceedings of XXXIIlI Symposium IGIP/
IEEE/ASEE: Local Identity Global Awareness, Engineering Education Today. Fribourg, Switzerland,
September-October, 2004.

[13] Redondo, M., Bravo, C., Ortega, M. and Verdejo, M.F. PlanEdit: An adaptive tool for design learning
by problem solving. In Proceedings of 2nd Adaptive Hypermedia and Adaptive Web-Based Systems
(AH2002). LNCS 2347, pp. 560-563. Springer-Verlag: Berlin, 2002.

